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For the advection-diffusion equation. the characteristic-Galerkin formulations are obtained by
temporal discretization of the total derivative. These formulations. by construction, are Eulerian-
Lagrangian, P'-d therefore can handle time-dependent domains without difficL ,y. The Galerkin/least-
squares space-time formulation, on the other hand, is written over the space-time domain of a
problem, and therefore can handle time-dependent domains with no implementational difficulty. The
purpose of this paper is to compare these two formulations based on error estimates and numerical
performance, in the context of the advection-diffusion equation.

0. Introduction

The advection-diffusion equation arises in several systems in fluid mechanics. It is also a
model problem for the Navier-Stokes equations. Time-dependent domains are also frequent,
such as in problems involving free surfaces, two liquid interfaces and drifting objects.

Although the advection-diffusion equation is linear and much simpler than the Navier-
Stokes equations, it is a challenge to numerical analysts when the diffusion coefficient is small.
In the finite element framework, there are several methods to circumvent the difficulty. To
give a few examples, we can mention the streamline-upwind!/Petrov-Galerkin, Galerkin/
least-squares, discontinuous Galerkin, and the Lagrangian-Eulerian schemes based on the
characteristic method (see [1] for a review). Time-dependent domains add difficulty to the
problem because one has to deal with moving meshes and, depending on the formulation,
projections and mesh intersections.

The characteristic methods are derived from the analytical solution of the advection-
dissipation equation,
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4,,+uV4ý+aO=f on Q=xO×0, T[,

and many schemes, such as those proposed by Chorin [2], Bristeau and Dervieux [3], and the
particle methods are based on this.

In 1979, adaptation of these methods to the finite element framework was found con-
currently by Benque et al. [4], Douglas and Russell [51 and Pironneau [6]. In simple words.
the idea is to discretize the total derivate D4,/Dt in time instead of -0,. Thus

0,,+uV4,-vA0=f on Q=f9 x 10, T]

could be discretized in time by

I [Ofl1 - 0,(x - un(x)k)] - v A4, "' =ff on f2

This is the basic idea. It can be interpreted as a splitting method (one step of transport + one
step of diffusion [7]) because it looks as if one convects 1, first and then applies the diffusion;
but the error analysis shows that there is more to the method than just this. In particular, the
method is unconditionally stable and in some cases so accurate that, for example, the rotating
hill problem can be solved in only one time step, if desired. As pointed out by Bermejo [81,
there are also a number of features that are common to this method and the particle method;
it is in fact a particle in cell method in which the cut-off function is the hat function of the
finite element method, and for which a projection step is performed every time step.

The Galerkin/least-squares space-time (GLS/ST) formulation for fixed spatial domains
was applied by Hughes and co-workers and Johnson and co-workers (see e.g. [9-11]), to a
large class of fluid dynamics problems, including compressible flows. Tezduyar et al. [12, 13]
applied the GLS/ST formulation to problems with time-dependent domains, and provided
several numerical examples from incompressible fluid dynamics, including those involving free
surfaces, liquid drops, two-liquid flows, and flows with drifting cylinders.

In the GLS/ST formulation, at each time step, one must solve the problem over a
space-time slab. For time dependent domains this space-time slab becomes non-cylindrical.

In this paper, we first describe the characteristic-Galerkin and GLS/ST methods and give
proofs of their stability, and partial proofs of the error estimates when the spatial domain is a
function of time. Then we evaluate these methods on a test problem involving advection-
diffusion of an exponential hill in a rotational flow field.

1. The characteristic-Galerkin method

Consider the convection-dissipation problem. Find k0 such that

01, + uV4,+a40=f in Q={x,t:xEE2(t),tE]O, T[} , (1)

4(x, 0) = 4"(x) Vx E 12(0), (2)
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4(x,t)=g(x,t) VxEF-(t)={x:lu(xt)-v(x,t)j.n(x,t)<O, xE (3(t)}
VtE 10, T[, (3)

where u, f, 0 0, g, 12, F are given; n is the outer normal to afl(t) and v(x, t) is the velocity of
the boundary point x E ag2(t) at time t. As usual, t is time and x E Rd.

PROPOSITION 1. Assume 02(t) is bounded with Lipschitz boundary F(t). Let n be the
normal. If 00 E L2 (2), g C Co( Q) and a, u, u. CE L -( Q), f E L2 (Q), then system (1), (3)
has a unique solution in CU(f2)

PROOF, The proof is constructive and will be used also to justify the algorithm. Let
{X(r)}0.,<,, be the solution of

d y(,) =,Ju(X(T), T) if X(r) E= 2(r), (4)
dr - v(X(r), r) otherwise,

with the boundary condition

X(t) = x. (5)

If u is the velocity of a fluid, then X is the trajectory of the particle that passes at position x at
time t. Problem (4), (5) has a unique solution because u is Lipschitz. In (4), (5), x, t are
parameters so X is written X(x, t; r); it is also the characteristic of the hyperbolic equation
(1). Now we note that

drd-T O(X(x, t; r), Tl,=, = O.,x, t) + uVOb(x, t) . (6)

Thus (1) is rewritten as

0., + ab =f (7)

and it can be integrated analytically;

k(x, t) =exp[-f a(X(T), ) dT][A + f(X(o-), o-) exp[f a(X(7), -dT] do ].SfXo a(X ,(8)

To find A we use (2) and (3). If X(x, t; 0) E F, then
LJ

g(X(x, t; 0), -(x)), (9) -

where 7'(x) is the largest time (<t) such that X(x, t; T) E F(').

If X(x, t; 0) E- 2(0), then [ ...- Li;'-•



120 0. Pironneau et at.. Characteristic-Galerkin and Galerkinileast-squares space-time tormnulations

A = "X(X~, t; 0)) . (9')

Let f2" be a bounded open set big enough to contain D(t) at all times. Note that

V. (uO) = oV- u + uVO. (10)

Thus, we also have an existence theorem for the convection-diffusion equation in divergence
form. (Recall that H(div, f2) = {u E L2 (0)": V. u E L 2(-Q))). We also introduce the notation

I ={x, t: x EE(t), t F_1, T[)}.

Let us assume that u can be extended into f" such that u E L'(0, T: H(div. 12")).

COROLLARY. With the hypotheses of Proposition I and if u E L'(O, T: H(div. f2°)) n
L'(Q), problem (1')-(3),

0',+V.(uO)=f in Q=D2xx, T[, (1')

has a unique solution in C"(O, T; L 2 (f2)).

PROOF. Use (10) and Proposition 1 with a =V u.

We also recall a similar result for the convection-diffusion equation.

PROPOSITION 2. Let f2 be bounded with boundary F Lipschitz. The problem

,0,+V-'(uO) - vAO=f in Q, (1

0'(x, 0) = 0b"(x) in 12(0), (12)

0 =g on E, (13)

has a unique solution in L' in t, H' in x if

up uijEL'(Q), fELN(Q), 0 E L 2(n), gisL 2 int, H1 2 (F) inx,

V> 0 . (14)

PROOF. The proof can be found in Ladyzhenskaya et al. [141 and Lions [151.

Extensions of this result to the time dependent domain can be made by using conformal
mappings for example which map f2(t) into 2(0). The problem then is on a fixed domain but
the coefficient v is now time and space dependent.

1.1. Discretization in time

Now for clarity we assume that V. u = 0. By (6),
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0" + uV0 = a O(X(x, t; -), T))T( • (15)

Thus by using the fact that X(x, (n + l)k; (n + 1)k) = x. we can say that

•+ U-Voy"l 1 [4"'(x) -_"(Xn(x))J, (16)

where Xn(x) is an approximation of X(x, (n + 1)k; nk).
Let us denote by X, an 0(k2 ) approximation of X"(x) and by Xn an approximation of order

0(k 3 ) (the differences between the indices of X and the precision order are due to the fact
that X" is an approximation of X on a time interval of order k; a scheme of 0(k") gives a
precision of O(k"+

For instance,

X'(x) = x - u"(x)k , (17)

x_(x) = X _ u" x + 1/2 "(X))• k k(18)

modified near the boundary without losing accuracy (see below) but so that X,(12" 1 ) C n2".

Then we derive a schemc for (11):
1 I+1 _ o f-n*I

k(fl - oX')- A6" f (19)

Note that 0"+' and 4"oX7 are both defined on Wi2"n.

REMARK 1. A second order scheme could be

S(On+, I _6On Xn) go nua6+1 + on) = fn+1,,2 (20)

but there is a difficulty because o"4 and o" are not defined on the same domain.

We will not prove convergence in the general case. For siinpli-Jty, we will assume that the
distance between f2" and X'(Ql"'-), 3(on, X7(f2"÷n)) is 0(k 2 ). This is not possible unless the
normal velocity of the fluid is equal to the normal velocity of the boundary,

u~n=v~n onE.

LEMMA 1. If u is regular and if X?(2"+1 ) C (2", the schemes (19) and (20) are L -stable and
if 3(1", X7(A2"+0)) = 0(k 2 ), it is convergent 0(k).

PROOF. We multiply (19) by o",' and integrate over f2"+. Unless explicitly mentioned all
norms and integrals are on n"+l:

11+6--+ -1 1 2 k"-+112 + vklV6"'l12 < (If +l Ik + Ion"oX II)k"+ 11. (21)
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Now by a change of variable y = X(x), we find that

IOno XTIo - k,(ST(x))2 dx

= f,""•,•(y) 2 detlVXT,]-' dy _< Ion 12 , .(1 + clul•.,k) (22)

Therefore ok" satisfies

II,"Il0 _ CifI10oQ + 10010,n] (23)

To obtain the error estimate, we proceed exactly in the same way but on the difference
,En= On - k((t') instead. Indeed

I ( _+ E, A (Ot + 1) D_ (t,') = 0(k)

when u n = v n on the boundary. Thus, (23) gives

II,'ll -<• c[Ilel°lln, -r IO(k)ll.

1.2. Approximation in space

Let us now discretize (19) or (20) with the finite element method. Then we obtain a family
of methods for which no additional upwinding is necessary: the schemes are unconditionally
stable!

For example with (19), assuming that u has zero divergence, a possible scheme would be

f. v'f+IW"+j dx+kv Von+,iVWn+ 1dx= f ,+1 4h(X'(x))w"'(x) dx

+ k f , fn+IWh*+ dx Vw+' lHo', 'k÷ - g, (24)

where H0+' is a space of continuous polynomial functions on a triangulation of 12"', with
zero traces on the boundaries and g. is a polynomial approximation inside f2 of g.

Notice that (24) is a linear system of the type

AO"n+1 =Ag,+b, where Ai,,= .. , w'w' dx,

bi= .. ,[kf + on(X.(x))]w'(x) dx,

and where {w')} is a basis of H'+' and 0'h =E W.

REMARK 2. A change of variable can be made in the last integral of (24), x--* y = X7(x), so

(24) is equivalent to
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on I w,,h dx + ki' VO " "Vw,, dx = k f-n1  41, l, dx

f j " O(y)wh((X`) 1 '(Y))detVX7dy Vw, EHHh' kV n
(24')

PROPOSITION 3. If X(2n )C fl", V. u 0u. n0 u v .nrscheme (24) is L2(0) stable

even if v = 0.

PROOF. Replacing w,, by on÷' in (24),

lIh'Ill = .L.~ (Of*i2: dx + k f , v , ' dx
hf f*"' ff . ..

= k f ft, dx + o "h(X,(x))0,; (x) dx

-< (kjfn'hl, + I0o° x' 0)n'' ,

(I nl( C id. n I I'))

•<(I0h[,(l+ cuI'.Kk) + klf"t 'I,)I4 ,. (25)

The last inequality is a consequence of the fact that the mapping x-- X is volume preserving.
Finally.

IonQ h :O:( (1+ cdull,.k)n (ll0k1,,l + E klfnI,). (26)

PROPOSITION 4. If H-+' is the space of continuous piecewise affine functions on the" O h 2 f

triangulation of f2f"t , then the L2 (f72) error between 4h solution of(24) and on solution of (11)

is O(h2/k + h). Hence the scheme is O(h2Ik + k + h).
L2

PROOF. Let us subtract (11) from (24) to obtain an error projected on L

n+1= -n+1 - Hhon+1 (27)

where Hhg,0n+' is an interpolation in H"b' of "+l. We obtain

± w dx+kv VE'VWh dx - f E °X7Wh dxfo, eh wh dxn~ h kh fn-+ h I

f+ (f+1 _- Ilnoh+')wh dx + vk f1a 1 1 V(4)nt' - fIhn+)VWhdx

- (0 - AI /) o xWh dx. (28)

n+1From (28), with wh = Eh , we find
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E1n, 1 1 ((I+ ctul0,k) .,l + 110" - <, I -, (I + CIU 141d.k)I"

- Ilh4,nl,,)II,'EII,
so

I1eV'11 (1 + ctul, k)llIeIl + C(h2 + vkh). (29)

REMARK 4. By comparing with (24), we see that eh is solution of a problem similar to that
of Oh in which f would be replaced by

I (o - -IV AJ(, b - Hh+,,. I)_ 1 (0" - U .h4..)oX ,,

where Ah is an approximation of A. We have bounded the first and the last terms in-
dependently. By being more cautious one can show that the error is in fact O(h + k + min(h 2/
k, h)) [5] but the dependence on v is stronger.

The case v =-0: Then (24) becomes

fj ,,+ d = 0" h Xln dx + k f 'wdx

04~l ¢n+I n..i

VWhe Hoh , "o, (30)

that is,

.1+I= Hh(okoXn + kf n') (31)

where /-/h is the projection operator from L2 into H,-n From this equation we see that the
fewer time steps there are the better because a projection inevitably produces numerical
diffusion; however when k is large the computation of Xn is costly. Experience shows that
k 1.5h/u is a good choice. This is a striking behavior of these Lagrangian/Eulerian
methods: they should be used wtn a CFL > 1.

Conservativity: Assume that

u*n=v n onY, (32)

and that f= 0 and v = 0; the equation is

4, + uV= 0, 0(x, 0) = 0 (x). (33)

By hypothesis V u = 0, so by integrating (33),

fa,, 0(t, x) dx = L]O) 4(x) dx Vt. (34)

On the other hand, (24') with w, = 1 also gives (34) because detIVX"I = I and X"(f2.O') =
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12". So the scheme is conservative up to quadrature errors on the approximation of the last
integral in (24) or (24') and up to integration errors due to X" being replaced by X' or X'.
Indeed w,, = 1 in (24) gives

L. , I+(x)dx = f noX' dxn = f 4()) detjVX' I-' d . (35)

Thus, if detjVX'fl = I (which implies X'(f2n,') = f-n), we obtain

f kr' h f(x)dx 0"7(y) dv 0"(x)dx. (36)

Thus, the scheme is conservative up to numerical integration errors on X7. In many
applications, this may not be sufficient but (17) or (18) can be modified so that detjVX]l = 1.
Indeed since V- u = 0, there exists a stream function (vector in 3D) V, such that u = V x i#. Let
4/h be a continuous piecewise approximation of Uj. Then the ODE dX/dr = V X d4h can be
integrated exactly ({X(r)} is a broken line) and x - X"(x) is volume preserving.

1.3. Implementation problems

Two points remain to be clarified: (i) the computation of X"(x) and (ii) the computation of
the integral,

In = fn Oh ° XhWh dx . (37)

1.3.1. Computation of (37)

Primal Gauss formula. We use a Gauss quadrature formula,

In t- I 'Wk bh (Xh( ýk))Wh(qk) ; (38)

for instance with P' elements we can take:
(a) {fk} = all the mid-points of the edges and Wk = ok/3 in 2D, o-k/4 in 3D. where o,, is the

area (volume) of the elements which contain 6k,

(b) the 3 (4 in 3D) inner nodes Gauss formula 116, 17];
(c) the 7 integration points formula (vertices, mid-edgcs and central node).

Any other integration formula can be used as long as the weights are positive. Numerical
tests can be found below with triangles and in [18] with quadrangles and the 9 nodes formula.

Dual Gauss formula. Denote by X" + (y) the inverse mapping of x - y = X' (x). Obviously
X`h(y) is an approximation of the solution at (n + 1)k of dX/dr = u(X(r), r), X(nk) = y.
Another class of methods can be obtained if a change of variable is made in the integral as in
(24').

f h°X'w, dx = 4rkh(Y)Wh(Xh (y)) detlVXh Idy. (39)
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When V. u = 0. the term detIVX,1 I is 1. so a Gauss formula gives

Oj w(6h)Wh('y(k). (40)

Now with such a quad!. ..ire formula, the scheme is conservative regardless of quadrature
errors. Such schemes were introduced and thoroughly tested by Benque et al. 141. However.
the effects of ouadrature errors on stability and error estimates is an open problem.

1.3.2. (," lputation of X'(x)
To compute ,,(X"(f ")) one must answer the following: given e find I such that

X"(f ) E- T;, a triangle of the triangulation of Q2". This is not a simple problem. We shall
proceed in two steps.

Step 1. Find m such that Ek - T,,,, a triangle of the triangulation of f2". In our problem we
know only in which triangle of W •A lies: we do not know that information in the
triangulation of 2". So assume we know in'. ( with 6 near 4 and E E T,, , a
triangle of the triangulation of .(2". Then intersect the segment C'. } with the
triangulation of f2" and proceed from neighbor triangle to neighbor triangle, starting
from f'k until f " is reached. This is possible if we have an array giving the number of
the three neighbor triangles of each triangle of the triangulation of W2".

Step 2. Compute all intersections of {( '•, X"( ý4) k with the edges of the triangulation and
proceed from neighbor to neighbor until X"( Ck) is reached to find 1.

But then at no extra cost we can improve on the scheme to compute X"(ýk): the numerical
scheme of X"( ýk) is applied within an element and when another element is reached, the
value of uh on the new element is used. With the first order scheme then, one can use the
barycentric coordinates { A,} of • and proceed as shown in Fig. 1. First on each element
compute i.t, such that

u(Q) = E juj~q' Ai• = 0,
=l.. . . d+l

where {q'} are the vertices of the element, Q its barycenter and d the dimension of the space.
Then find p such that

qq

Fig. 1. Computation of X' by following the streamline in the triangulation.
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A = pu p, [IA' 4 (2

To find p. we assume that m is the index of the A,,. which is zero,

A,- (43)

then if A, -0. Vi. the in is the right one.
Thus most of the work goes into computing 1', for all the elements. Because of round off

errors, it may be difficult at times to decide which is the next triangle that the characteristic
will cross, for instance if X"( () is on a vertex, so careful programming is needed.

If u 1 = V x i1h and di, is piecewise affine and continuous, as mentioned above, a slightly
different algorithm can be used in place of (17). Instead of defining the characteristics as the
curves tangent to u,,. we define them as curves of equal values of tb," the numerical advantage
is that if a characteristic enters a triangle if must leave it even in presence of round off errors.
i.e. given an entry point k and di,,( 6) one needs just to test which side q'q' is. such that
U,(A ) ( [) (q'u. h(q')] or i Oh()q'), ]h(q)] and then obtain the exit point by linear
interpolation based on 0,,.

2. Galerkin least-squares space-time formulation

Consider again the convection-diffusion equation

.,+V (u. - P, AO= f on Q, (44)

4(x, 0)-= 0,(x) in D(O)) (45)

'= g on . (46)

Assume for simplicity that V u = 0.
Choose a time step k and construct a quadrangulation T" of D2(t"), t" = nk, for each n such

that the quadrangulation T n' of 12(t') is obtained by moving the vertices of that of O(t')
with the condition that no quadrangle is flipped over in the process. This way, by joining the
vertices of T" with their images in , one obtains a proper quadrangulation of the space
time slab

Q,," = {(x, t): XeE 9(t), teit", t,,÷'} (47)

REMARK. The method does not require that the mesh at tVe next time step should be
obtained by moving the vertices of the previous mesh, but our proof of convergence relies on
this special case.

Define the space of piecewise linear functions which are piecewise linear in each component
of the vector (x, t) of Rd±I, which are continuous in x but discontinuous in t:
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ý, = (wh • 1  ) wh piecewise affine in x,, affine in t on Q,}
(48)

,,0h = EEW~hfwh /Ih "w=0 on .

The Galerkin least-squares space-time (GLS/ST) method defines the approximate solution
0"' as the solution in W"', equal to gh on E. and such that for all w, in Wn, I we have

fo"l*I(k7i2 +' u-*V4*V1 -f)w,, + f•, z'V4÷', .Vwh

E(6~ + A.Von+l _), V~ 1+V

1
e=1 Lnf~ + u - 0,f)

e=I Q

(w,,. + u .Vwh - V Aw,,) + fh (4"•' - o.

where n,, is the number of elements. For the purpose of proving well-posedness and
convergence, we use the following modified form of (49):

f. ['*,t ± uV' - fliWh + T(wha, + uVwh)] + ff (0,,,' - ,, h)

+ v f+ 2 V n*7+ Vw =0. (50)

The spatial domain f" is to be understood as W" x { t"}. The scalar r is a positive parameter
of order O(h + k).

PROPOSITION 5. Problem (50) is well-posed; the solution exists and is unique.

PROOF. Equation (50) is a linear system with respect to the values of 6'+ ' at the vertices of
the quadrangulation of Q"+, i.e. the vertices of both T' and T". There are obviously as
many equations as unknowns so we only need to check that the kernel of the system is zero,
i.e., that f =g = = 0 implies (b"+' = 0 for all n.

With these zero data and wh = ,,hU' (50) is
fQ~ [1 ,h V(on+1)2] f)2 - ono-lf- [1(ch1+ )2 + I + f [(Oh')' - hnn* ]

+ h.f , IVo, +1-2 =0+ T(40n, + u.Vn+1'. (51)

Let us integrate the first two terms by parts:

f [(., +1)2 + Uv(,) 2  f (1+1)2 = f (on+1)2

, 1t) 2
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Now the last integral is positive because dh" is zero when u n < v n. Therefore (50) yields

lf1  (•PI I)"- f f 1)2 + f [(O - l,2o 1o,1- (53)

Define (f , P 2f t ̀
(Oh =+ {n•) bh=(• ) (54)

Then, using Schwartz' inequality, (53) is also
a. ,+l bl -2a2b,+l (55)

But this can be rewritten as

a. + - an + (bn+1 - a,,)2 0 (56)

therefore
an+t I-- an. (57)

Now a0 = 0 by hypothesis and a,2 > 0, so (56) implies a,, 0.

Let us prove convergence. For simplicity we will do it in the hyperbolic case only. When
v 0, the method converges O(h + k) in H'. Extension to the general case can be established
following [111.

PROPOSITION 6. When T = O(h + k), V = 0, g = gh, the method converges O((k + h) 3"2 ) in
L .

PROOF. The proof is an adaptation of that given by Johnson 1111. The idea is not to treat
space and time separately. Let us introduce the vector

U = (1, u)VC Rd+1 (58)

and rewrite (44), for v = 0, as

UV.,,k =f. (59)

Thus (50) is equivalent to

[UVx. 1 k+' -fltwh + 7'UV.,, WhI + fn h -- 0"I, =0. (60)

The only difference with the time independent formulation of the least-square Galerkin
method is the fact that the elements are discontinuous in time and the presence of the last
integral in (60) which looks like a penalty term to insure that 0'+' is close to 4 at t = t".

Therefore, let 17h be an interpolation operator from H'(Q) into 17 Wn and define
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t•h = 17h 0, le - 0 - Oh, I e = d/ - Oh, (61)

Subtract (59) in variational form from (60):

LfQ UVX,['t[w + rUV,,W,] + fi,, [e" - "]Wh = 0. (62)

Notice that

S= eh - - ). (63)

Choose wh = eh and rewrite (62) as

n+1 n+1 +;,ru- n4f-) 1 n ".I

f., (UV.,,eh)[eh, + h+ [e' - h]L

= fo~~. Uvv,(i"' - ," ')[-' +"Q . *I I + fill,,• ]

+ f.[() -€")(41 - "]h (64)

Next notice that if N denotes the space-time normal to a Q, we have

f (,n(I = I M+1 = - f (') 2U N (65)
lfnl +) i:,,? +I (eh"

== f. (, ) - ('" + J fat(,e(' 1)2 (u - v) n (66)

2 eh + fn h(f f')t A
The last integral is positive because Eh is zero when u n < v - n. Using this in (63) and
integrating by parts the term UV,,,(Ol,", -0 )e,, yields

I (f,, 1 )f(en') -f nn, + ')(U
"f"+{ Al 2- f L h 'h i2 f" fal(t) ehv n

+ fQl, n+UV.,,÷'1)2

f",)[Yrs.e, + (O,, )h,'U

+ TIUV%,,(II÷+ - 0"+,)lo.Qt.,eIU .,2,7'o

+,f [I4÷' - €"'-(,#, - On)],÷I . (67)

Finally we rewrite the first three terms as
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(, , n+• )2 + n(E )I-n 1211 , - 2 '1 . I -

hn hh h h .!1 _t' (E

flIIfn n1 2fI1E -- 
I0 ll f nEh

(68)

and we obtain

iEVL' I I - 5ih"nl-1,(EEI 12.,,n +, i E~ )2(u u)- 'hnh 0.11",, f'"' L I

+ Vt..UVEn)+) 1-0. Q.

-j , ' - k1 )uV,E,,: +j (On - 6n)(,-, E,)

h, fn It..
+ (' h v - O"'b)E f

f in-, It On' - (i i - v n

+C _ ,IUV .,( l - "-. (69)

Here we have used the fact that #j,'+ =q1" and ,'1 =4,n on d2" (see (61)). It would not be

true if the triangulation at step n + I was not obtained by moving the nodes of that at step n.

Now denote Xm {(x, t): x eQ(t), t <• t'} and Qm = {(x, t) E Q: t -< t m
). Let us sum with

respect to n:

1,n h n " I *h I - c h(u - v). n + 2rIUV,,,Eh 12

h 0 + 214ih 0-I0oQUV,.,EhIOQ. + 2f ( -d

-2 (410 - 0 )e'h6 +2 E I'h-- - Oa.na,'4 -- 11(,.12

fn 0 .. ( h h n),( h h) h

+221 ('01h - 0)Eh(U - v) n + 2rI UV,.,(q'h )IO.QI UV,.,ehloQ• (70)

Now, since 41,, is an interpolate of d. all terms on the right are bounded by some power of
8 = h + k, the biggest of which is 8 312 because

1h - 4, 0.10,Q _ c 4, 112.Q 2 .V,(Iqh - 4)1o.,Qm _< C10112.Q5 (71)

141h - lo.s - C1 10 112.Q6312 (72)

on any smooth surface S of Q. So the right-hand side of (69) is bounded by
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cltlII.Q8[(8 + r)IUV ,EhIQ. ÷ •1•7+ f l, , + '( j Ef - [I

+ •8 ;2 (u - v). ne%,.L I]. (73)

Assume T-= O(8). Since eh = 0 when (u - v)- n < 0, we haven=M_1

+ ÷ 7M -I _ . + j E(u - v). n + TrIUV,,E,,2.
nt=O

C 2.Q (74)

REMARK. If 110112 is replaced by II6I13, then 8312 can be replaced by 82 in (72). With this
additional regularity and our hypothesis the method is 0(8 2).

3. Numerical simulations

3.1. Summary of the algorithms

The characteristic-Galerkin method used is based on a finite element method of order 1
(continuous piecewise affine) on triangles with a primal Gauss quadrature with seven
integration points, the vertices, the middle of the edges of the triangles and the center of the
triangles. Finally the characteristics are computed exactly via a piecewise linear stream
function.

Since the domain is time dependent, the triangulations at each time step are different. Here
we assume that each triangulation is obtained from the previous time step by moving the
vertices with the velocity field v, We have two velocity fields, the mesh velocity v and the fluid
velocity u. At each time step the following must be done:

ALGORITHM 1: Characteristic-Galerkin with time dependent domains
(1) Compute the coordinates of the vertices of the new mesh.
(2) Compute the old mesh triangle numbers which contain the new mesh quadrature points.
(3) Find where these quadrature points were in the fluid at the previous time step and their

triangle number in the old mesh.
(4) Compute the integrals just on the right of the equal sign in (24) with w,, = w (new mesh);

use the seven Gauss point formula.
(5) Compute the matrix of the linear system (w', wi are with respect to the new mesh)

Ai= f "w'w' + z' f VVw Df w'. (75)

(6) Solve the linear system (by the Choleski alge ithm for instance).
(7) Update all arrays and go back to 1 until t = T is reached.
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It should be noted that when v = 0 and when the motion of the mesh is incompressible
(V . v = 0), the matrix A does not depend on n. This allows us to program the method to have
always only one mesh at a time in the memory. It also allows a unique factorization of A but
we have preferred to reconstruct A at every time step.

REMARK. Algorithm I computes the solution of (11) in the frame of reference in which the
domain is fixed so that the velocity of the mesh should be changed accordingly if the results
are desired in the original frame of reference.

The least-squares Galerkin method is conceptually simpler and much easier to program. but
it requires the solution of a linear system which is double the size of the other method and the
system is non-symmetric. On the other hand it is exactly conservative (the other method is
conservative only if dual quadratures are used).

ALGORITHM 2: Least-squares Galerkin
(1) Triangulate Q'.
(2) Construct the linear system of matrix

A1= [(wi, + uVw')(w' + Tr(w',) + uVw') + zVw'Vw'i + f w'w' (76)

(3) Construct the right-hand side and solve the system.

Contrary to Algorithm 1. the results of Algorithm 2 correspond to the solution of the
problem in the fixed frame of reference where the mesh moves.

3.2. The rotating hill

The flow is purely rotational and the convected variable has an exponential hill profile, i.e.,
almost zero everywhere excrt in a small region. After one turn, the solution should be
identical to the initial condition, if P = 0.

The velocity of convection is

u=W XX=((WX", -wx)' , W= .

The initial condition is

60(x) = exp(- 101(x - x,,))1) , x,= (0.5 0.0)'.

The domain f2 is the unit circle. The time step chosen is t = 7r/ 14.
Experiments are done with a moving domain and the mesh moves with the velocity of the

domain v which is different from the -, ',cit, of the fluid u.

v = (v, v2)' , v = j(x, t) xx,

/3(x,t) = 0, + cos(27rt)p3, sin(2'irar), r = xj .
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Velncal Ais

0.00 100 2.00 300 4 00 5 00 600 7 00 8 00 9 00 10 00

HanontOna Axis
Exact solution

Vertial Axis

0.00 1.00 2.00 3.00 4.00 5.00 6 00 7 00 8 00 9.00 1000

Comp~jibon donm on a fixed domain

I Vertcal Axai-s

0.00 1.60 2.00 3060 4ý00 5ý00 6060 7.00 8.00 90 1Oio000

Honzontal Axis
Cwnptation *tth a mnoving domain

Fig. 2a. Central cross sections of the exponential hill with v' = 0 obtained with the characteristic-Galerkmn method
after 14 time steps: exact solution (top), for fixed mesh (middle), and for rotating mesh (bottom).
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1 min: 0000000 1
2 12498E-5 I

l09 max: 99984E -5

12 mn:-81533E-9 I
2 --+- 12458E-5 1 min:-10933E-8

09 max: 9g727E-5 i2 12373E-5
09 max: 99067E.5

S mrn:-70372E-0 1 1 rn:-40278E-0 1
12 ---- 12107E-5 12 --+--: 11747E-5
'09 max: 96864E-5 09 max: 93982E-5

Fig. 2b. Contour plots of the exponential hill with P' 0 obtained with the characteristic-Galerkin method after 14
time steps: initial condition and mesh (top), for fixed mesh (middle), and for rotating mesh (bottom).

At each iteration in time, the vertices q' of the triangulation are moved by integrating the
equation

dx
dt (x(t), t) , x(t) = q' ,

with ten steps of the forward Euler scheme.
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0

ts =7 ti 14

S j 0
ts = 7 Is = W4

Fig. 2*. Contour plots of the exponential hill with P'= 0 obtained with the least-square Galerkin method: initial
condition (top), for fixed mesh (middle), and for rotating mesh (bottom).

We tested several cases in which values of the parameters in the definition of 13(x, t) are
,60 = 0 or - 1, 63, = 0 or 0.25, a = 0 or 1 and v = 0 or 0.01. In all cases, the solutions obtained
with the characteristic-Galerkin and the GLS/ST methods are presented. We use a time step
size of tr / 14.
Rotating hill with fixed and rotating meshes, We set jG, = 0 for the fixed mesh and 030 -1 for
the rotating mesh. We computed in each case for 14 time steps. Figures 2a, 2b and 2* show the
solutions for the case with v = 0 at time steps 7 and 14. while Figs. 3 and 3* show the solutions
for the case with v = 0.01 at the same time steps.
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i mirn: 0000 O0
2 --.-- 5293SE-6

-- - - - - - - -0 max 4234SE-

o 70l , -4/-4 - - - -I

SolOtConvDill
o M

000------- -- 000-0-0-

24 -- 5511-E

09 ax* -- -E

2000 3O 0 300 4 0 000 000 1.0 S00 $00 000

Ob'+- "004

t. o tof onvO 14

*- /-00

000 0o0 000 300) 400 000 000 000 500 000 .000

0l~0.on400 000000

Fig. 3. Central cross sections and contour plots of the exponential hill with v 0.01 obtained with the
charactenstic-Galerkin method after 14 time steps: for fixed mesh (top), and for rotating mesh (bottom).

IiS=7 11=14

tl = 7 t = 14

Fig. 3'. Contour plots of the exponential hill with v, = 0.01 obtained with the least-square Galerkin method: for
fixed mesh (top), and for rotating mesh (bottom).
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I min:-51950E-8

2 --~- 12477E-5
09 max- 10017E-4

I min:-1 138SE-8
2 --- 12339E-5

09 max: 98798E-5 1

Fig. 4. Meshes and contour plots of the exponential hill with v 0 for stretching mesh obtained with the
characteristic-Galerkin method: after 7 time steps (top), and after 14 time steps (bottom).

ts = 7

ts = 4 tv 14

Fig. 4*. Meshes and contour plots of the exponential hill with v =0 for stretching mesh obtained with the
least-square Galerkin method: after 7 time steps (top), and after 14 time steps (bottom).
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I man -I259SE -8
2 12070E-5

09 max 9665X-.5

I v rn:-53542E-8

12 1. 11650E -5 1
o0g max: 93575E-5 I

Fig. 5. Meshes and contour plots of the exponential hill with v' 0 for rotating and stretching mesh obtained with
the least-square Galerkin method: after 7 time steps (top), and after 14 time steps (bottom).

Ix7 Is = 7

Fig. 5*. Meshes and contour plots of the exponential hill with v = t) for rotating and stretching mesh obtained with

the least-square Galerkin method: after 7 time steps (top), and after 14 time steps (bottom).
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Rotating hill with stretching mesh, In this case. we set /3, = 0.25 to describe the motion ot the
mesh. The viscosity is set to 0. Figures 4 and 4* show the meshes and the solutions at time
steps 7 and 14.
Rotating hill with rotating and stretching inesh. In this case. we set /3, = - I and 03, = ..25 to
describe the motion of the mesh. The viscosity is set to 0. Figures 5 and 5* shovw the meshes
and the solutions at time steps 7 and 14.

The computations for the characteristic-Galerkin were done on a Macllfx. Each run takes
approximately 30 min and 1 Mbyte. The computations for the GLS/ST where done on a Cray
2.

4. Conclusions

We have compared the characteristic-Galerkin and Galerkin/least-squares space-time
formulations (which are both suitable for time-dependent domains) based on error estimates
and numerical performance for a test problem governed by the advecton-diffusion equation.
We have shown that the formulation of the problem with either method is well-posed and the
order of accuracy is the same as when the spatial domain is fixed, that is, O(h + 8) for the
characteristic-Galerkin formulation and O(h00 + t ) for the GLS/ST formulation. It was
brought to our attention, at the galley proofs time, that related convergence studies appear in
[20, 21]. The test problem involves the transport of an exponential hill in a rotational flow
field. The results obtained with the two methods for various combinations of the Peclet
number and mesh motion show that the numerical performance of these two methods are very
good.
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